218 research outputs found

    Comment on Quadriceps Protects the Anterior Cruciate Ligament

    Get PDF

    Exotendons for Assistance of Human Locomotion

    Get PDF
    Background: Powered robotic exoskeletons for assistance of human locomotion are currentlyunder development for military and medical applications. The energy requirements for such devices are excessive, and this has become a major obstacle for practical applications. Legged locomotion in many animals, however, is very energy efficient. We propose that poly-articular elastic mechanisms are a major contributor to the economy of locomotion in such specialized animals. Consequently, it should be possible to design unpowered assistive devices that make effective use of similar mechanisms. Methods: A passive assistive technology is presented, based on long elastic cords attached to anexoskeleton and guided by pulleys placed at the joints. A general optimization procedure is described for finding the best geometrical arrangement of such exotendons for assisting a specific movement. Optimality is defined either as minimal residual joint moment or as minimal residual joint power. Four specific exotendon systems with increasing complexity are considered. Representative human gait data were used to optimize each of these four systems to achieve maximal assistance for normal walking. Results: The most complex exotendon system, with twelve pulleys per limb, was able to reduce the joint moments required for normal walking by 71% and joint power by 74%. A simpler system, with only three pulleys per limb, could reduce joint moments by 46% and joint power by 47%. Conclusion: It is concluded that unpowered passive elastic devices can substantially reduce the muscle forces and the metabolic energy needed for walking, without requiring a change in movement. When optimally designed, such devices may allow independent locomotion in patients with large deficits in muscle function

    Predictive Simulation of Gait at Low Gravity Reveals Skipping as the Preferred Locomotion Strategy

    Get PDF
    The investigation of gait strategies at low gravity environments gained momentum recently as manned missions to the Moon and to Mars are reconsidered. Although reports by astronauts of the Apollo missions indicate alternative gait strategies might be favored on the Moon, computational simulations and experimental investigations have been almost exclusively limited to the study of either walking or running, the locomotion modes preferred under Earth\u27s gravity. In order to investigate the gait strategies likely to be favored at low gravity a series of predictive, computational simulations of gait are performed using a physiological model of the musculoskeletal system, without assuming any particular type of gait. A computationally efficient optimization strategy is utilized allowing for multiple simulations. The results reveal skipping as more efficient and less fatiguing than walking or running and suggest the existence of a walk–skip rather than a walk–run transition at low gravity. The results are expected to serve as a background to the design of experimental investigations of gait under simulated low gravity

    Optimality Principles for Model-Based Prediction of Human Gait

    Get PDF
    Although humans have a large repertoire of potential movements, gait patterns tend to be stereotypical and appear to be selected according to optimality principles such as minimal energy. When applied to dynamic musculoskeletal models such optimality principles might be used to predict how a patient\u27s gait adapts to mechanical interventions such as prosthetic devices or surgery. In this paper we study the effects of different performance criteria on predicted gait patterns using a 2D musculoskeletal model. The associated optimal control problem for a family of different cost functions was solved utilizing the direct collocation method. It was found that fatigue-like cost functions produced realistic gait, with stance phase knee flexion, as opposed to energy-related cost functions which avoided knee flexion during the stance phase. We conclude that fatigue minimization may be one of the primary optimality principles governing human gait

    A Weighted Least-Squares Method for Inverse Dynamic Analysis

    Get PDF
    Internal forces in the human body can be estimated from measured movements and external forces using inverse dynamic analysis. Here we present a general method of analysis which makes optimal use of all available data, and allows the use of inverse dynamic analysis in cases where external force data is incomplete. The method was evaluated for the analysis of running on a partially instrumented treadmill. It was found that results correlate well with those of a conventional analysis where all external forces are known

    A Weighted Least-Squares Method for Inverse Dynamic Analysis

    Get PDF
    Internal forces in the human body can be estimated from measured movements and external forces using inverse dynamic analysis. Here we present a general method of analysis which makes optimal use of all available data, and allows the use of inverse dynamic analysis in cases where external force data is incomplete. The method was evaluated for the analysis of running on a partially instrumented treadmill. It was found that results correlate well with those of a conventional analysis where all external forces are known

    Antagonistic Co-Contraction Can Minimize Muscular Effort in Systems With Uncertainty

    Get PDF
    Muscular co-contraction of antagonistic muscle pairs is often observed in human movement, but it is considered inefficient and it can currently not be predicted insimulations where muscular effort or metabolic energy are minimized. Here, we investigated the relationship between minimizing effort and muscular co-contractionin systems with random uncertainty to see if muscular co-contraction can minimize effort in such system. We also investigated the effect of time delay in the muscle, by varying the time delay in the neural control as well as the activation time constant.We solved optimal control problems for a one-degree-of-freedom pendulum actuated by two identical antagonistic muscles, using forward shooting, to find controller parameters that minimized muscular effort while the pendulum remained upright in the presence of noise added to the moment at the base of the pendulum. We compared a controller with and without feed forward control. Task precision was defined by bounding the root mean square deviation from the upright position, while different perturbation levels defined task difficulty. We found that effort was minimized when the feedforward control was nonzero, even when feedforward control was not necessary to perform the task, which indicates that co-contraction can minimize effort in systems with uncertainty. We also found that the optimal level of co-contraction increased with time delay, both when the activation time constant was increased and when neural time delay was added. Furthermore, we found that for controllers with a neural time delay, a different trajectory was optimal for a ontroller with feedforward control than for one without, which indicates that simulation trajectories are dependent on the controller architecture. Future movement predictions should therefore account for uncertainty in dynamics and control, and carefully choose the controller architecture. The ability of models to predict co-contraction from effort or energy minimization has important clinical and sports applications. If co-contraction is undesirable, one should aim to remove the cause of co-contraction rather than the co-contraction itself

    Quantification of in Vivo ACL Elongation During Dynamic Joint Movements: A New Methodology

    Get PDF
    Anterior cruciate ligament (ACL) injuries are common in movement tasks incorporating sudden changes in velocity, such as sidtestepping. Current techniques adopted to quantify ACL strain are invasive as well as limited to slow, quasi-static move- ments. This paper presents a method for non-invasive measurement of ACL elongation during dynamic movement tasks, validation of the method, and demonstrates its applicability to the analysis of sidestep movement
    • …
    corecore